Automata and Formal Languages

Lecture 04

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Benha U	niversity	Staff Settlefione:Ahmed Hassan Ahmed Abu El Atta (
Benha University Home	You are in: <u>Home/Courses/Auto</u> Ass. Lect. Ahmed Hassa Automata And Formal	an Ahmed Abu El Atta :: Course Details:	Coost	
التسغة العربية		add course edit course		
My C.V.	Course name	Automata and Formal Languages	RG	
About	Level	Undergraduate	in	
Publications	Last year taught	2018	f	
Inlinks(Competition)	Course description	Not Uploaded		
Theses			5	
Reports	Course password			
Published books			1	
Workshops / Conferences Supervised PhD	Course files	add flies		
Supervised MSc	Course URLs	add URLs	m	
Supervised Projects	Course assignments	add assignments		
Language skills	Course Exams &Model Answers	add exams	9	
Academic Positions	dimoder Answers		(edit)	
Administrative Positions				

Regular Expressions & Regular Languages

Agenda

Regular Expressions

► Example

The Operations Priority

Languages Associated with Regular Expressions

► Examples

Properties of Regular Expressions

≻RE to NFA

► Examples

Regular Expressions

The set of regular expressions over an alphabet "A" is defined inductively as follows, where + and • are binary operations and * is a unary operation:

Basis:

• Λ , ϕ , and **a** are regular expressions for all **a** \in **A**.

Induction:

• If **R** and **S** are regular expressions, then the following expressions are also regular:

(R), R + S, R.S, and R*.

A = {a, b}

\wedge	Ø	а	b
	\wedge -	⊦ b	
	b	*	
	a + (b.a)	
	(a +	b).a	
	a.	0*	
	a* -	- b*	

The Operations Priority

* highest (do it first),

+ lowest (do it last).

 $a + b.a^* = (a + (b.(a^*)))$

Languages Associated with Regular Expressions $L(\phi) = \phi$, $L(\Lambda) = (\Lambda)$, L(a) = (a) for each $a \in A$, $L(R + S) = L(R) \cup L(S)$,

 $L(R \bullet S) = L(R)L(S)$ (language product), $L(R^*) = L(R)^*$ (language closure).

Let's find the language of the regular expression $a + bc^*$. We can evaluate the expression L($a + bc^*$) as follows:

$$L(a + bc^{*}) = L(a) \cup L(bc^{*})$$

= L(a) $\cup (L(b).L(c^{*}))$
= L(a) $\cup (L(b).L(c)^{*})$
= {a} $\cup (\{b\} . \{c\}^{*})$
= {a} $\cup (\{b\} \{\Lambda, c, c^{2}, ..., c^{n}, ...\})$
= {a} $\cup \{b, bc, bc^{2}, ..., bc^{n}, ...\}$
= {a, b, bc, bc², ..., bcⁿ, ...}

language L $(a^* \cdot (a + b))$ in set notation: L $(a^* \cdot (a + b))$ = L (a^*) L (a + b)= $(L (a))^* (L (a) \cup L (b))$ = $\{\Lambda, a, aa, aaa, ..., \}\{a, b\}$ = $\{a, aa, aaa, ..., b, ab, aab, ...\}.$

language $r = (a + b)^* (a + bb)$ in set notation: L ((a + b)*.(a + bb)) = L ((a+b)*).L (a + bb)

- = (L (a+b))*.(L (a) U L (bb)) = ({a, b})*.({a} U L (b)L(b))
- = {Λ,a,b,aa,ab,ba,bb ...}{a, bb}

= {a, bb, aa, abb, ba, bbb, ...}

Find language?

∧ + b b* a + (b.a) (a + b).a (aa)* (bb)* b

For $\Sigma = \{0, 1\}$, give a regular expression **R** such that

• L (R) = {w $\in \Sigma^*$: w has at least one pair of consecutive zeros}.

$$R = (0 + 1)^* \ 00 \ (0 + 1)^*$$

Find a regular expression for the language

• L = {w \in {0, 1}* : w has no pair of consecutive zeros}.

 $(1 + 01)^*(\Lambda + 0)$

{\lambda, 0, 1, 01, 10, 11, 010, 011, 101, 110, 111, 0101, 0110, 1010, 0111, 1110,.....}

= { Λ , 1, 01, 11, 011, 101, 111, 0101, 0111,....}

U { 0, 10, 010, 110, 0110, 1010, 1110,}

= { Λ , 1, 01, 11, 011, 101, 111, 0101, 0111,....}

 $\cup \{ 0, 10, 010, 110, 0110, 1010, 1110, \}$ = { Λ , 1, 01, 11, 011, 101, 111, 0101, 0111,....} $\cup \{\Lambda, 1, 01, 11, 011, 101, 111,\}{0}$ ={1, 01}* $\cup \{1, 01\}^*.{0}$ ={1, 01}*{ Λ , 0}

Find a regular expression for

Properties of Regular Expressions

1. (+ properties)

2. (\cdot properties)

3. (Distributive properties)

- R + T = T + R, $R + \emptyset = \emptyset + R = R,$ R + R = R,(R + S) + T = R + (S + T).
- $R\emptyset = \emptyset R = \emptyset,$ $R\Lambda = \Lambda R = R,$ (RS)T = R (ST).
- $$\begin{split} R(S+T) &= RS + RT, \\ (S+T)R &= SR + TR. \end{split}$$

Properties of Regular Expressions (cont.)

(Closure properties)

- 4. $\emptyset^* = \Lambda^* = \Lambda$.
- $$\begin{split} 5. \ & R^* = R^* R^* = (R^*)^* = R + R^*, \\ & R^* = \Lambda + R^* = (\Lambda + R)^* = (\Lambda + R) R^* = \Lambda + R R^*, \\ & R^* = (R + \ldots + R^k)^* & \text{for any } k \geq 1, \\ & R^* = \Lambda + R + \ldots + R^{k \cdot 1} + R^k R^* & \text{for any } k \geq 1. \end{split}$$
- R*R = RR*.
 (R + S)* = (R* + S*)* = (R*S*)* = (R*S)*R* = R*(SR*)*.
 R(SR)* = (RS)*R.
 (R*S)* = Λ + (R + S)*S,
 - $(RS^*)^* = \Lambda + R \; (R+S)^*.$

RE to NFA

First parse *r* into its constituent sub expressions.

Construct NFA's for each of the basic symbols in *r*.

€

€

N(t)

Every time we construct a new state, we give it a distinct name.

Find an NFA that accepts L (r), where

Λ

Find an NFA that accepts each regular Expression

a*a + ab (aab)*ab ab*aa

