Automata and Formal Languages

Lecture 04

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Regular Expressions & Regular Languages

Agenda

Regular Expressions

Example

 \triangleright The Operations Priority

Languages Associated with Regular Expressions

Examples

Properties of Regular Expressions

EXA RE to NFA

Examples

Regular Expressions

The set of regular expressions over an alphabet "A" is defined inductively as follows, where + and • are binary operations and * is a unary operation:

Basis:

 \circ Λ, ø, and a are regular expressions for all $a \in A$.

Induction:

◦ If R and S are regular expressions, then the following expressions are also regular:

 (R) , R + S, R.S, and R^{*}.

 $A = \{a, b\}$

The Operations Priority

 \ast highest (do it first),

+ lowest (do it last).

 $a + b.a^* = (a + (b.(a^*)))$

 \bullet

Languages Associated with Regular Expressions

 $L(\emptyset) = \emptyset$, $L(\Lambda) = (\Lambda)$, $L(a) = (a)$ for each $a \in A$, $L(R + S) = L(R) \cup L(S)$, $L(R \cdot S) = L(R)L(S)$ (language product), $L(R^*) = L(R)^*$ (language closure).

Let's find the language of the regular expression a + bc*. We can evaluate the expression $L(a + bc^*)$ as follows:

$$
L(a + bc^*) = L(a) \cup L(bc^*)
$$

= L(a) \cup (L(b).L(c^*))
= L(a) \cup (L(b).L(c)^*)
= {a} \cup ({b} . {c}^*)
= {a} \cup ({b} {A, c, c^2, ..., c^n, ...})
= {a} \cup {b, bc, bc^2, ..., bc^n, ...}
= {a, b, bc, bc^2, ..., bc^n, ...}

language $L (a^* \cdot (a + b))$ in set notation: $L (a^* \cdot (a + b)) = L (a^*) L (a + b)$ $= (L (a))^* (L (a) \cup L (b))$ $= \{\Lambda, a, aa, aaa, ...\} \{a, b\}$ $= \{a, aa, aaa, ..., b, ab, aab, ...\}.$

language $r = (a + b)^*$ (a + bb) in set notation: L $((a + b)^*. (a + bb)$)= L $((a + b)^*).$ L $(a + bb)$ $= (L (a+b))^*$.(L(a) U L(bb)) $= (\{a, b\})^* . (\{a\} \cup L (b)L (b))$

 $= \{\Lambda, a, b, aa, ab, ba, bb, ...\}$ {a, bb}

 $= {a, bb, aa, abb, ba, bbb, ...}$

Find language?

 $\Lambda + b$ b^* $a + (b.a)$ $(a + b).a$ $(aa)* (bb)* b$

For $\Sigma = \{0, 1\}$, give a regular expression R such that

 \circ L (R) = {w \in Σ^* : w has at least one pair of consecutive zeros}.

$$
R = (0 + 1)^* 00 (0 + 1)^*
$$

Find a regular expression for the language

 $\circ L = \{w \in \{0, 1\}^* : w \text{ has no pair of consecutive}\}$ zeros}.

 $(1 + 01)*($ \wedge + 0)

{Λ , 0, 1, 01, 10, 11, 010, 011, 101, 110, 111, 0101, 0110, 1010, 0111, 1110,…….}

 $= \{ \Lambda, 1, 01, 11, 011, 101, 111, 0101, 0111, \ldots \}$

∪ { 0, 10, 010, 110, 0110, 1010, 1110, ….}

 $= \{ \Lambda, 1, 01, 11, 011, 101, 111, 0101, 0111, \ldots \}$

∪ { 0, 10, 010, 110, 0110, 1010, 1110, ….} $= \{ \wedge$, 1, 01, 11, 011, 101, 111, 0101, 0111,....} ∪ {Λ, 1, 01, 11, 011, 101, 111, ….}{0} $=\{1, 01\}^* \cup \{1, 01\}^*.$ {0} $=\{1, 01\}^*$ { Λ , 0}

Find a regular expression for

$$
L1 = {anbm : n ≥ 3, m is odd}
$$

\n
$$
L2 = {anbm : (n + m) is odd}
$$

\n
$$
L3 = {anbm, n ≥ 3, m ≤ 4}
$$

Properties of Regular Expressions

1. $(+$ properties)

2. $($ properties)

3. (Distributive properties)

- $R + T = T + R$, $R + \emptyset = \emptyset + R = R,$ $R + R = R$, $(R + S) + T = R + (S + T).$ $R\varnothing = \varnothing R = \varnothing,$
- $R\Lambda = \Lambda R = R$, $(RS)T = R(ST).$

 $R(S + T) = RS + RT,$ $(S + T)R = SR + TR$.

Properties of Regular Expressions (cont.)

(Closure properties)

- 4. $\varnothing^* = \Lambda^* = \Lambda$.
- 5. $R^* = R^*R^* = (R^*)^* = R + R^*$ $R^* = \Lambda + R^* = (\Lambda + R)^* = (\Lambda + R)R^* = \Lambda + RR^*,$ $R^* = (R + \dots + R^k)^*$ for any $k \geq 1$, $R^* = \Lambda + R + \ldots + R^{k-1} + R^k R^*$ for any $k \geq 1$.
- 6. $R^*R = RR^*$. 7. $(R + S)^* = (R^* + S^*)^* = (R^*S^*)^* = (R^*S)^*R^* = R^*(SR^*)^*$. 8. $R(SR)^* = (RS)^*R$.
- 9. $(R^*S)^* = \Lambda + (R + S)^*S$, $(RS^*)^* = \Lambda + R (R + S)^*.$

RE to NFA

First parse r into its constituent sub expressions.

Construct NFA's for each of the basic symbols in r .

Every time we construct a new state, we give it a distinct name.

Find an NFA that accepts L (r), where

 \land

Find an NFA that accepts each regular Expression

a [∗]**a + ab (aab)** [∗]**ab ab**[∗]**aa**

